<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A shape is translated by the vector (\begin{pmatrix} 0 \ 4 \end{pmatrix})</td>
<td>In which direction does the shape move? Circle your answer.</td>
<td>[1 mark]</td>
</tr>
<tr>
<td>2</td>
<td>What is 1.75 kilometres as a fraction of 700 metres?</td>
<td>Circle your answer.</td>
<td>[1 mark]</td>
</tr>
<tr>
<td>3</td>
<td>The first 4 terms of a linear sequence are 3 11 19 27</td>
<td>Circle the expression for the (n)th term.</td>
<td>[1 mark]</td>
</tr>
</tbody>
</table>
4. Work out the lowest common multiple (LCM) of 20, 30 and 40
 Circle your answer.
 [1 mark]

 10 120 240 24 000

5. The length of a table is 110 cm to the nearest cm
 Complete the error interval.
 [2 marks]

 ___________ cm ≤ length < ___________ cm

 Turn over for the next question
6 A music festival has taken place each year from 2011.
The table shows the number of people who attended each year.

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people</td>
<td>350</td>
<td>583</td>
<td>906</td>
<td>1471</td>
<td>2023</td>
<td>2612</td>
<td>3251</td>
<td>3780</td>
</tr>
</tbody>
</table>

The festival organisers draw a time series graph to represent the data. The first four years have been plotted.
6 (a) Complete the graph. [2 marks]

6 (b) Use the graph to estimate the number of people who will attend the festival in 2019 [2 marks]

Answer ________________________________

Turn over for the next question
7

\[k = n^2 + 9n + 1 \]

Mo says,

“\(k \) will be a prime number for all integer values of \(n \) from 1 to 9”

Show that Mo is wrong.

You must show that your value of \(k \) is not prime.

[3 marks]
Doug owes an amount of £600
He wants to pay off this amount in five months.
He says,

“Each month, I will pay back 20% of the amount I still owe.”

Show working to check if his method is correct.

[3 marks]
A motor racing circuit consists of
- two parallel straight sections, each of length 0.75 km
- a semicircle of diameter 0.9 km
- three equal, smaller semicircles.

The length of a motor race must be greater than 305 km

What is the lowest number of full laps needed at this circuit?
You must show your working.

[5 marks]

Answer ________________________________
10 Solve $8 > 3 - \frac{1}{2}x$

[2 marks]

Answer ________________________________

11 Use trigonometry to work out the size of angle x.

[2 marks]

Answer ________________________________ degrees
Lewis wants to draw the graph $y = x^3$ for values of x from -2 to 2.

Here is his graph.

Make **one** criticism of his graph. [1 mark]
13 The probability of Heads when a biased coin is thrown is 0.6
The coin is thrown 500 times.
Circle the expected number of Tails.

\[20 \quad 200 \quad 250 \quad 300 \]

[1 mark]

14 The mean mass of a squad of 19 hockey players is 82 kg
A player of mass 93 kg joins the squad.
Work out the mean mass of the squad now.

[3 marks]

Answer ______________________________\ kg
A company makes two types of lampshade using fabric on wire frames.

Lampshade A

Fabric is used to make the curved surface of a cylinder.
The cylinder has radius 8 cm and height 22 cm

Lampshade B

Fabric is used to make the four triangular faces of a pyramid.

Each triangular face has base 15 cm and perpendicular height 24 cm

Not drawn accurately
Work out the ratio cost of one lampshade A : cost of one lampshade B
Give your answer in the form \(n : 1 \)

\[
\begin{array}{|c|c|}
\hline
\text{Cost of fabric} & £400 \text{ per square metre} \\
\text{Other costs for A} & £3.50 \text{ per lampshade} \\
\text{Other costs for B} & £7.50 \text{ per lampshade} \\
\hline
\end{array}
\]

Answer ______ : _______
16. In a running club there are 50 females and 80 males.
 If a female is chosen at random, the probability she has blue eyes is 0.38
 If a male is chosen at random, the probability he has blue eyes is 0.6

 One person is chosen at random.
 Show that the probability the person has blue eyes is more than 0.5

 [4 marks]

17. \(w = \frac{3}{5\sqrt{x}} \)

 Circle the expression for \(w^2 \)

 [1 mark]

\[
\begin{array}{cccc}
\frac{6}{10x^2} & \frac{9}{25x^2} & \frac{6}{10x} & \frac{9}{25x}
\end{array}
\]
Here is some information about the ages of people at a concert.

<table>
<thead>
<tr>
<th>Age, x (years)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \leq x < 15$</td>
<td>8</td>
</tr>
<tr>
<td>$15 \leq x < 25$</td>
<td>24</td>
</tr>
<tr>
<td>$25 \leq x < 40$</td>
<td>30</td>
</tr>
<tr>
<td>$40 \leq x < 70$</td>
<td>39</td>
</tr>
</tbody>
</table>

Draw a histogram to represent the information. [3 marks]
The length of a roll of ribbon is 30 metres, correct to the nearest half-metre.
A piece of length 5.8 metres, correct to the nearest 10 centimetres, is cut from the roll.

Work out the maximum possible length of ribbon left on the roll.

[3 marks]

Answer ______________________ metres
20 Curve P has equation \(y = 2(x - 1)^2 - 5 \)
Curve Q is a reflection in the \(y \)-axis of curve P.

Work out the equation of curve Q.
Give your answer in the form \(y = ax^2 + bx + c \) where \(a \), \(b \) and \(c \) are integers.

[3 marks]

Answer

Turn over for the next question
21 Priya and Joe travel the same 16.8 km route.
 Priya starts at 9.00 am and walks at a constant speed of 6 km/h
 Joe starts at 9.30 am and runs at a constant speed.
 Joe overtakes Priya at 10.20 am
At what time does Joe finish the route?

Answer ________________________________
22 An approximate solution to an equation is found using the iterative formula
\[x_{n+1} = \frac{(x_n)^3 - 2}{10} \quad \text{with} \quad x_1 = -1 \]

22 (a) Work out the values of \(x_2 \) and \(x_3 \) [2 marks]

\[x_2 = \] \hfill
\[x_3 = \]

22 (b) Work out the solution to 5 decimal places. [1 mark]

\[x = \]
The diagram shows the side view of a step ladder with a horizontal strut of length 48 cm. The strut is one third of the way up the ladder. The symmetrical cross section of the ladder shows two similar triangles. Work out the vertical height, \(h \) cm, of the ladder. [5 marks]

Answer \(\boxed{\text{(Your Answer)}} \) cm
A sphere has radius $2x$ cm

A cone has
\[\text{radius } 3x \text{ cm} \]
\[\text{perpendicular height } h \text{ cm} \]

The sphere and the cone have the same volume.

Work out \[\text{radius of cone : perpendicular height of cone} \]

Give your answer in the form \[a : b \] where \(a \) and \(b \) are integers.

[4 marks]
25 \(ABCD\) is a quadrilateral.

The quadrilateral is reflected in the line \(x = 4\).

Which vertices are invariant?
Circle your answer.

\[1 \text{ mark}\]

\[A \text{ and } D \quad C \text{ and } D \quad B \text{ and } C \quad B \text{ and } D\]
26 \[f(x) = \frac{2x + 3}{x - 4} \]

Work out \(f^{-1}(x) \) \[4 \text{ marks}\]

\[\text{Answer } \]

Turn over for the next question
27 The line \(y = 3x + p \) and the circle \(x^2 + y^2 = 53 \) intersect at points \(A \) and \(B \). \(p \) is a positive integer.

27 (a) Show that the \(x \)-coordinates of points \(A \) and \(B \) satisfy the equation

\[
10x^2 + 6px + p^2 - 53 = 0
\]

[3 marks]
27 (b) The coordinates of A are (2, 7)
Work out the coordinates of B.
You **must** show your working.

[5 marks]

Answer (________, ________)

Turn over for the next question
28 Here is a sketch of a quadratic curve.
The turning point is (3, –2)

Circle the correct statement about the gradient of the curve for \(x < 3 \)

- gradient is positive
- gradient is negative
- gradient is zero
- gradient could be any value

[1 mark]

END OF QUESTIONS
There are no questions printed on this page

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7JX.

Copyright © 2018 AQA and its licensors. All rights reserved.